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Abstract

In this paper we examine the application of artificial neural networks to low level pro-
cessing of tactile sensory data. In analogy to the term eerly vision, we call the first level
of processing required in tactile sensing early faction. Associated with almost all exist-
ing realizations of tactile sensors, are fundamental inverse problems which must be solved.
Solutions to these inverse problems are computationally demanding. Among such inverse
problems, is the problem of ‘deblurring’ or deconvolution of data provided by an array of
tactile sensors which is also assumed to be corrupted by noise. We note that this inverse
problem is ill-posed and that the technique of regularization may be used to obtain solu-
tions. The theory of nonlinear electrical networks is utilized to describe energy functions
for a class of nonlinear networks and to show that the equilibrium states of the proposed
network correspond to regularized solutions of the deblurring problem. An entropy regu-
larizer is incorporated into the energy function of the network for the recovery of normal
stress distributions. It is demonstrated by means of both computer simulations and hard-
ware prototypes that neural networks provide an elegant solution to the need for fast, local
computation in tactile sensing. An integrated circuit prototype of the proposed network
which has been designed and fabricated is discussed as well.

1 Introduction

Recent years have seen a significant increase in the complexity of tasks performed by robotic
manipulators. As the complexity of these tasks continues to grow, the need for automated
tactile sensing becomes increasingly evident. The term tactile sensing, as used here, refers to
the continuous sensing of forces over regions of contact. Included in this definition of tactile
sensing are the more rudimentary operations of binary contact sensing and pressure sensing,.

Since the specific requirements of robot tactile sensing have not as yet been clearly defined,
it is often useful to view tactile sensing in humans as a model for artificial tactile sensing. Tactile
sensing in humans is a dynamic process in which dexterous hands are used in conjunction
with dense arrays of subcutaneous sensors to extract information about the contact which is
necessary for feature identification and formulation of manipulation strategies (see [13]). An
‘ideal’ artificial tactile sensing system should strive to perform a similar function.

The problem of tactile sensing can be hierarchically separated into three stages.

(a) At the lowest level of the hierarchy, there are the device level problems of designing a
tactile sensory device, and of designing a dextrous manipulator to be equipped with such



sensors. According to a well known survey [18], tactile sensors should be distributed in
arrays on thin, flexible, compliant substrates. Also, since tactile sensing is based upon
physical contact, it is required that the entire structure comprising the tactile sensors be
mechanically durable and robust against environmental variations. It was also suggested
in [18] that a fair amount of preprocessing of the sensory data be performed in proximity
to the sensor so as to limit the quantity of data to be transferred to the central processing
unit.

(b) Given data from the tactile sensors, the second stage of the hierarchy is concerned with
low-level processing and extraction of information. For example, often raw data provided
by the sensors are not measurements of contact forces, but are related in some manner
to the stress profile over the region of contact. In such instances, the inverse problem
of determining the stress at the contact surfaces must be solved in order to obtain a
meaningful interpretation of the sensory data. Detection of edges, extraction of geometric
information and identification of conditions such as slippage are further examples of tasks
to be performed at this level of the hierarchy. It is this level of tactile sensory data
processing that we term early taction.

(¢) The top-most level in this hierarchical picture of tactile sensing is the level at which
decisions are made, based upon information provided by the two previous stages. For-
mulation of manipulation strategies is performed at this level. For example, if a condition
of slippage has been recognized, a manipulation strategy should be formulated so as to
alleviate this condition. Also at this level of processing, decisions are made regarding the
identification of a grasped object based upon information about texture, shape (which
could have been determined from knowledge of edges), and material (which may possibly
be determined from thermal conductivity).

It is among the goals of this paper to take a step towards integrating the two lowest levels of
this hierarchy.

Several aspects of tactile sensing are of a very similar nature as problems encountered in
computational vision. Essential differences lie in the fact that unlike vision sensors, which are
remotely located with respect to their target, tactile sensors are required to be in physical
contact with their targets. The ‘deblurring’ problem considered in this paper is an example of
a problem which also arises in computational vision. Edge detection, which is used in vision to
determine boundaries within the visual field, is required in tactile sensing to identify physical
edges of objects, and locate holes to determine shape. A similar analogy can be drawn between
motion detection in vision and identifying slippage in tactile sensing.

The set of processes that recover physical attributes of visible three dimensional objects
from two-dimensional visual (intensity) images, is collectively termed as early vision. In a sim-
ilar manner, the elements of the second hierarchical level of tactile sensing may be collectively
termed early taction. Early taction then can be defined as the set of processes that recover
the three-dimensional attributes of an object and properties of the established contact, from
two-dimensional arrays of sensor measurements. As yet, the set of problems of which early tac-
tion is comprised have not been clearly defined, but recovery of stress over the contact region,
edge detection, and identification of slippage are likely among them. In the case of human
tactile sensing, the total number of sensor cells in a fingertip area of 20 X 30mm can exceed
60,000. In [18] it is suggested that a typical array of 10 X 10 sensor elements per square inch
should suffice for many applications of tactile sensing. Considering only this reduced number
of 100 sensors, the quantity of data that must be transferred to the central processing unit, if



all processing is to be done there, is still prohibitive. It would not in general be acceptable to
have a cable running from the hand to the CPU consisting of several hundred conductors. In
addition to simply conveying the information to the central processing unit, there is also the
actual processing task which would demand much of the available processing time. It is clear
that a great deal of preprocessing should be performed at or near the sensor array itself. In do-
ing so, a simpler representation or compression of the data may be obtained which could then
be conveyed to the central processing unit. Demands upon the processing power of the CPU
would then perhaps be limited to, at most, only the top level in the tactile sensing hierarchy.
In humans, useful information is often acquired through active manipulation. A grasped object
is often scraped, rolled, mutilated to determine its shape and other properties [18]. Therefore
it is reasonable to assume that in robots, as in humans, static contact analysis together with
dynamic analysis may prove to be useful. This dynamical aspect of tactile sensing, together
with the fact that tactile sensing is generally to be applied in a ‘real time’ environment, implies
the need for fast processing of tactile sensory data.

In this paper we discuss a {ramework within which at least some of the second level of
tactile information processing may be performed. The approach taken is designed to meet
the requirement of local fingertip processing as well as the demand for fast computation. The
problem considered here is the determination of surface stress from an array of sensors which
provides measurements of strain induced in a elastic medium by contact at the boundary. Since
it can be assumed that the data provided by the sensors is corrupted by noise it is necessary
to consider this additional aspect of the problem as well. In order to meet the requirements of
fast local fingertip processing, the paradigm of neural networks is considered.

Inspired by the work of neurophysiologists, psychologists and other researchers on the mech-
anisms of computation, learning and memory in biological systems, artificial neural networks
are an attempt to reproduce the computational efficiency observed in the nervous system. An
artificial neural network may be defined as a highly interconnected network of simple process-
ing units. The processing units themselves are rarely more than simple amplifiers (usually
nonlinear amplifiers such as those with sigmoidal characteristics are used), yet neural networks
have in many instances demonstrated an ability to solve complex problems. The computa-
tional power of artificial neural networks is embedded in the nature of connectivities between
the processing units (or neurons) of which they are composed. Neural networks' are usually
regarded as being comprised of layers of neurons and the interconnections among them. Asso-
ciated with a connection (also called a synapse) between two neurons, say neuron ¢ and neuron
4, is a number w;; called the weight of the connection (sometimes referred to as the synaptic
weight) between neuron 7 and neuron j, which determines the effect that the output of neuron
¢ has upon the activity of neuron j. For example, if the output of neuron ¢ is v; then the
input to neuron j due to the connection of neuron ¢ to neuron j is given by wgjv;. It is the
connectivity profile (distribution of connection weights) which determines the computational
task performed by any given network. The nature of computation in a neural network is both
parallel and asynchronous.

The paradigm of neural networks also provides a formalism for the analog hardware imple-
mentation of inherently parallel algorithms. Biological neurons are often modeled as integrators
(with the sum of all inputs to the neuron as the integrand) composed with output functions.
In terms of analog circuits this corresponds to a simple RC integrator circuit followed by an
amplifier with the desired characteristics. Connections between neurons can be implemented
as resistors. If the output of neuron i is a voltage which is connected to the input of neuron j
through a resistor R;; then Ohm’s Law dictates that the current input to neuron j due to the

1ThLe terin neural networks will be used in reference to artificial neural networks unless otherwise indicated



output v; of neuron ¢ is R;;v;. Ience the synaptic weight w;; is simply 1/R;;. Hence having
arrived at a neural network model for computation, implementation of the network as an elec-
trical circuit is a natural extension. Advances in microelectronics have provided the technology
required for implementations of ‘small’ neural networks. VLSI implementations of networks
consisting of hundreds, thousands, even tens of thousands of neurons, should be possible with
further advances in microelectronic technologies, but as yet are unrealizable due mostly to
limitations in integrated circuit density and physical size. Integrated circuit implementation
of neural networks to perform the low level processing tasks of the second level of hierarchy in
tactile sensing would provide fast computation which can be performed in close physical prox-
imity to the sensors. The resultant of processing performed by such a network can then be
transmitted to the central processing unit for higher level interpretation (and decision making
based upon the interpretation) using relatively few conductors. Such an approach would also
result in lower computational demand upon the CPU.

In Section 2, a particular inverse problem which arises in the context of tactile sensing is
introduced. The inverse problem is formulated as a variational principle and ‘regularization’ is
used to compensate for the ill-posedness of the problem and provide for reliable computation
in the presence of sensor noise.

In Section 3 some aspects of nonlinear RC electrical networks are discussed. It is shown
that under certain conditions it is possible to guarantee stability and explicitly determine a
strict Lyapunov function for such a network. Since such a Lyapunov function is minimized
in the course of natural time evolution of the network, steady state outputs of the network
correspond to the solutions of a minimization problem (defined by the Lyapunov function).

An analog neural network to solve the inverse problem of tactile sensing is described in
Section 4. Using the results of Section 3, an energy function for the proposed network is de-
termined and shown to be equivalent to the variational principle formulated in Section 2 for
regularized solution of the inverse problem. Computer simulations of the proposed network
are presented in order to evaluate performance of the network in the presence of noise. Ex-
perimental results from a prototype breadboard model of the network as well as a preliminary
attempt at integrated circuit implementation of the network are also discussed.

2 Inverse Problems In Tactile Sensing

In this section we examine the fundamental inverse problem which arises in the context of robot
tactile perception. Inverse problems of a similar nature also arise in the field of computational
vision in early vision problems which have often been designated as inverse optics (see Poggio
and Koch [41]). Hadamard [17] in 1923 defined a problem to be well-posed if: (1)The solution
exists, (2)The solution is unique, and (3)The solution depends continuously on the initial data.
If any of the above three criteria are not satisfied, the problem is said to be ill-posed. Most
inverse problems which arise in physical settings (such as those in early vision) are ill-posed in
the sense defined by Hadamard and thus require special techniques to solve.

Numerous tactile sensors have been designed and fabricated for use with robotic end-
effectors. All such sensors have been based on the deformation of materials by contact forces
and the measurement and interpretation of the deformation to determine the forces inducing
it. Examples of some approaches to tactile sensor design are to be found in [8], [15], [7],
[43], and [38]. In typical approaches to tactile sensor design, the transduction process is
effected by materials such as piezo-electric polymers [8] and crystals, conductive rubber [8],
and piezoresistive materials such as silicon [56]. In [38] a tactile sensor is described which is
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Figure 1: (a) Schematic top and crossectional view of a single piezoresistive tactile sensing
element. (b) Application of forces to the mesa deforms the diaphragm, causing changes in the
resistance of the piezo resistors.

designed to operate based upon changes in optical characteristics of a material at boundaries
(total internal reflection). Such an approach has the advantage of very high spatial resolution
since it is not necessary to construct arrays of discrete sensors. Another novel approach to
tactile sensor design is described in [5] where transduction is based upon variations in magnetic
fields which are measured by a VLSI array of Hall-effect sensors. In most approaches to tactile
sensing, there arises an inverse problem, namely, given data from the sensors, determine the
force profile at the contact region.

2.1 Tactile Sensors and Compliant Contact

For the purpose of providing a concrete example, we concern ourselves here with a silicon
based piezoresistive triaxial tactile sensor with a compliant layer which has been designed and
fabricated at the Naval Research Laboratories in Washington D.C. and described in [56].

The sensor is constructed as a micromachined silicon mesa surrounded by a thin diaphragm
in which a number of diffused piezoresistors are placed (see Figure 1). An array of these sensors
is constructed on a single die and then bonded and packaged to be mounted on a robot fingertip.
Sensitivity of the tactile sensor is determined by the magnitude of strain induced in the resistors
by a given force. In order to increase sensitivity of the sensors, it is necessary to decrease the
thickness of the diaphragm and thereby increase the likelihood of its rupture due to excessive
force. To attenuate large forces and provide damping against large impulsive impact forces,
the array of sensors is covered by a layer of compliant material such as rubber or polyimide.

The use of a compliant layer for fingertip contact serves four beneficial functions.

(1)As mentioned previously the compliant layer serves to protect the sensors from damage

due to contact forces.
(2) In order to facilitate a stable grasp it is desirable to enhance friction at the contact
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Figure 2: (a) Stress applied at the boundary of elastic layer with strain sensors beneath surface.
(b) Elastic layer extends from Ymin 10 Ymaz with sensors at depth x beneath the surface at
intervals of Ay.

surfaces. For given material at the contact surface, this can be achieved by maximizing contact
area. A rigid material in contact with an irregular or bumpy surface, contacts the surface at
a few discrete points only whereas a compliant material can conform to the surface and thus
maximize contact area Since the tactile sensing array provides the desired contact surface on
the robot finger, it is beneficial to provide compliant contact atop the array of sensors.

(3)The third function of the compliant layer is due to the resultant ‘blurring’ of the contact
force distribution which causes information about the entire stress distribution to be passed to
each individual sensor element. In the absence of such blurring, determination of the applied
stress between sample points would not be possible.

(4) Compliant contact is beneficial in establishing well-posedness of the grasp problem (see
13)). |

Referring to Figure 2(a), we state a fundamental inverse problem.

Inverse Problem: Given samples of a strain distribution, measured by sensors at a given
depth beneath the surface of a compliant layer, the inverse problem of tactile sensing refers to
the problem of determining the surface stress distribution which induced the measured strain.

The inverse problem as stated above is formulated for the particular tactile sensor design
which we consider here, but is similar to the inverse problems associated with many other
tactile sensors as well.

2.2 Modeling the Transduction Process

For sake of simplicity in the current discussion, two assumptions are made. (i) The general
three dimensional problem is reduced to a two dimensional setting. i.e. we consider a linear



array of sensors with planar stress applied to the pad. (ii) It is also assumed that the compliant
layer is actually a homogeneous, isotropic, linear, elastic half-space.

To understand the inverse problem, a model for the forward transduction process is first
developed i.e. a model describing the relationship between stress applied to the compliant
layer and the strain induced at a depth z beneath the surface. From the theory of elasticity
(see Timoshenko and Goodier [54]) two relationships (for detailed derivations see [55] and [11])
can be derived..

Strain at a depth z beneath the surface of the compliant material due to normal stress at
the surface is given by

poly) = (K0)) = [ K2(v, 1) (uo)dyo M)

where, p;(-) is the strain at depth z, ¢,() is the surface stress, and k%(-,-) is the convolution
kernel relating the two given by,

T -y 23:2 —uvlv _ 2
i) = 2 WE)(w2+(:z§ _4;/01))2()3,2 o)) 2)

where, v is Poisson’s ratio for the material and F is the modulus of elasticity. Strain due
to tangential stress applied at the surface is given by an analogous formula, with convolution
kernel,
2(y - yo)((l — V)2$2 - V(V + 1)(y - y0)2) (3)
TE(z? + (y — %0)?)? '

For the sake of simplicity we only consider the case of normal stress throughout this paper
since the case with tangential stress is obviously analogous?.

Since measurements of strain are made at a discrete number of points only, equation (1)
must be discretized.

Assume that the sensors are distributed uniformly (equal spacing) beneath the surface of
the compliant layer. Let Ayy be the distance between points at which strain is sampled. So,

ki‘(y’ 'yO) =

Ymax — Ymin

Aoy = "N

(see Figure 2), where N is the total number of sensors. Let A,y be the distance between points
where the stress profile is to be reconstructed. Although it is not necessary for A,y and Ayy to
be equal, for the current discussion we let A,y = A,y = Ay. To obtain a discretized version of
equation (1), let €, be the vector of strain samples i.e., €, = (€g,,. .., €zy )7 . Therefore, ¢, =
Pe(Ymin + (I —1)Ay) i=1,...,N. Similarly, let f, = (fu,,.-., fox)? be the vector obtained
from the stress distribution as, fy, = qu(ymin + (¢ — 1)Ay) t=1,...,N. The convolution
kernel £2(-, ) can be discretized to form the matrix T' = {T%;} by letting T3; = k3(vi, y;), where
Yi = Ymin + (i — 1)Ay for i = 1,..., N. Hence the discretization of equation (1) results in,

& =T:f. (4)

The discretized inverse problem is precisely the problem of determining f, given €, and
T.

Returning to the third desirable feature of compliant contact, we observe that if we let T
be a non-square matrix then in solving the inverse problem we are attempting to reconstruct

2The analogy referred to here does not extend to the choice of regularizer for the case of tangential stress.



the surface stress at points along the surface other than those directly above the sensors. This
is only possible since the blurring of signals by the compliant layer results in information about
most of the stress distribution at the surface being passed to every sensor. The exceptions to
this are due to zeros in the convolution kernel.

It can be shown (see Appendix A) that in the infinite dimensional setting of equation (1),
the inverse problem is ill-posed. Since the operator K is a compact operator on an infinite
dimensional domain, its inverse does not exist as a bounded operator. Hence Hadamard’s third
requirement for well-posedness is violated. It can also be shown (see Appendix A) that the the
manifestation of this ill-posedness in the discretized problem (4) is occurs in the ill-conditioning
of the matrix 7. Hence solutions to the inverse problem in the discretized case are sensitive to
noise in the data. Ill-conditioning of the matrix T also increases with the dimension of T'.

2.3 Regularization as a Technique to Solve the Inverse Problem

There exists a large body of literature devoted to approximating the solutions of ill-posed
problems (see e.g. Tikhonov [52] and Tikhonov and Arsenin [53]). One successful technique for
solving ill-posed problem is regularization which was introduced by Tikhonov [52] in 1963. TII-
posed problems such as the one considered here are often insufficiently constrained and require
the imposition of additional constraints for the solution to be well defined. Regularization is
a technique in which the problem is formulated as a variational principle which is then used
to impose physical constraints on the solution. A variational principle defines the solution to
a problem as the function which minimizes an appropriate cost functional (Poggio and Koch
[41)).

Regularization requires the choice of a norm ||-|| and of a stabilizing functional (typically of
the form ||Pz||). The stabilizing functional embodies the physical constraints of the problem
and thus must be chosen only after careful analysis of the physical setting in which the problem
arises. Constraints such as smoothness and boundedness of solutions may be imposed by
appropriate choice of the stabilizer.

The problem of solving Kz = y can be formulated as a variational principle simply by
choosing a norm || - || and the finding  which minimizes

1Kz — yl|

3 To regularize the problem additional constraints are imposed through the stabilizing func-
tional.
Standard regularization theory is composed primarily of three methods (see [41] and [42]).

1. Among all z which satisfies the condition ||Pz|| < ¢, where c is a constant, find # which
minimizes || Kz — y||.

2. Among all @ which satisfies ||Kaz — y|| < € ,where € is chosen to represent estimated
errors, find z which minimizes || Pz||.

3. Find z which minimizes
1Kz — y||* + Al| Pz||? (5)

where A is called the regularization parameter.

3This is easily shown to be equivalent to using the generalized inverse K t to obtain solutiona; i.e. letting
K™ denote the adjoint of K, z = (K*K)™'K*y = Ky whenever the inverse on the right exsits.



In standard regularization theory, the operator P is linear and the norm ||-]| is derived from
an inner product. For such quadratic variational principles, of the form (5), it can be shown that
under mild conditions the solution space is convex (which implies the existence, uniqueness and
stability of solutions). In this paper we will consider other forms of the stabilizing functional
which we will denote by M(z). Hence we will be considering variational principles of the from

|Kz — ylI* + AM(2) (6)

The regularization parameter A controls the degree to which a solution is regularized. Small
values of A compromise the degree of regularization in favor of accurately matching the initial
data. Very large values of A may result in very regular but unrealistic solutions.

2.3.1 Regularizing the Tactile Sensing Problem

To regularize the inverse problem of tactile sensing it is necessary to first identify the generic
physical constraints that may be imposed upon the solution. In the case of normal stress
applied to the the compliant pad (see Figure 2), it is clear that the unisense nature of the
compressive loading on the boundary can be captured by constraining solutions to lie in the
positive orthant. To further suppress some of the deleterious effects of sensor noise, the solu-
tions may be constrained to be smooth. Constraining solutions to be smooth may result in
inaccurate solutions near physical edges, however, edges may be recovered in a second stage of
regularization.

The constraints of nonnegativity and smoothness of the solutions can be embodied in the
stabilizing functional by choosing

M(z) = Z::z:z log z; (7)

which has the same functional form as Shannon entropy. Hence in the case of the inverse
problem of tactile sensing, the problem is to find a vector f € R which minimizes

"va - €:a:”2 + A Zf'u; log fv; (8)

where T € RV*V s a finite matrix approximation to the convolution operator, €, € RY is
the vector of measured strains and f, € IRY is the vector of stress components. (The norm
|| - || is the standard Euclidean norm on RV

Exsistence and uniqueness of solutions to the minimization problem are easily verified by
noting that the positive orthant in R” is a convex set and that equation (8) is a strictly convex
function of f,.

3 Nonlinear Electrical RC Networks

Nonlinear electrical networks have been a topic of active research for many years. Hence
there exists a large body of results pertaining to such networks. As elaborated in Section
1, the transition from neural networks to electrical networks is not only trivial, but natural.
Mathematical analysis of neural networks is as yet a developing field. It seems natural to look
to the available results for nonlinear electrical networks for insight and understanding of the
behavior of neural networks.

Some of the earliest work on electrical networks was done by James Clerk Maxwell in
1873 [36] and is concerned with the distribution of currents and voltages in linear resistive



networks. Later work by Tellegen [49], Cherry (1951) [4], and Millar (1951) [37] helped to
build a foundation for nonlinear network analysis. In 1964 Brayton and Moser [2] attempted
to build a more general theory of nonlinear networks by considering some geometric aspects of
such networks. More recently, several researchers have adopted an even more general geometric
view of nonlinear networks (see e.g. [35], [9], [34],[33], and [46]. In these latter works, network
dynamics are viewed as flows (differential equations) on nontrivial manifolds (nonlinear spaces).
It is clear that a great deal of mathematical machinery has been developed for analysis of
nonlinear networks. Applications of the same tools and body of results to neural networks
should prove useful.

In this section one particular application of electrical network analysis to neural networks
is demonstrated. We define an energy function for a dynamical system as a functional which
is minimized (globally or locally) as a result of the natural time evolution of the system. We
present in this section a theorem which is then applied in Section 4 to determine an energy
function for a neural network designed to solve the inverse problem described in Section 2.

3.1 A Theorem on Energy Functions for Nonlinear RC Networks

As in [2], we consider a network composed of branches and nodes with the restriction that a
branch connects exactly two nodes. Arbitrarily assigning a direction to the branch currents,
we define ¢, as the current flowing from the initial node to the end node of the uth branch in
the network. The branch voltage v, is defined as the voltage rise measured from the end node
to the initial node of the pth branch in the network.

For any network, a complete set of generalized current or voltage coordinates can be chosen.
Such a set of variables is complete in the sense that they can be assigned values independently
without violation of Kirchoff’s laws and that they determine in each branch of the network
one of the two variables, branch current or branch voltage. In computing M, the number
of defining current coordinates, constant current sources if any are not counted as branches
and similarly in computing N, the number of defining voltage coordinates, constant voltage
sources are not counted as branches. In the particular case of a RC network, a complete set
of variables is obtained by considering the voltages across all independent capacitive branches.
Two capacitors in parallel are considered as a single capacitive branch with capacitance equal
to the parallel combination of the two. We will denote the complete set of variables for a RC
network by v* = (v1,...,vn).

The following theorem (which appears in [40]) identifies an energy function for a class of
nonlinear RC networks. For the proof of this theorem see Appendix B.

Theorem 3.1 Consider a nonlinear RC electrical network for which the following hypotheses
hold.

H1: The voltages across independent capacitive branches, v* = (vy,...,vn) form a complete
set of variables for the network.

H2: Let i1,...,in be the currents through the corresponding capacitive branches (with the
appropriate reduction of parallel capacitors) satisfying,

i, _ 0

— = ,k=1,...,N j#k
avj 6vk .77 b J#

Then,

10



1. The equilibrium states of the network correspond to the stationary points of the energy
function,

N
P(v*) = —Z/ ’ i dv;
i=1"0

2. Stable equilibrium states of the network correspond to local minima of P(v*).

3. If in addition to this P(v*) — oo as ||v*|| — oo, then the network is asymptotically stable
i.e. v* will approach one of the stable equilibrium states of the network (given by the local
minima of P(v*)) ast—oc0. W

As a corollary to the preceding theorem, we consider the case where we would like to
formulate the energy function in terms of an auxillary set of independent variables. For proof
of the corollary see [40].

Corollary 3.1 Assume (H1) and (H2) of Theorem 3.1 hold. Let v* = (uq,...,un) be the
auzillary set of independent variables in which we are interested and let u; = g;(v;), 1 =
1,...,N, where g; : R — IR. Then if g;(-) ¢ =1,...,N are monotone increasing functions,
then the conclusions of Theorem 3.1 hold and the energy function P(-) may be expressed in
terms of the variables u* by simply replacing each v; by g7 ' (u;).

4 An Analog Neural Network Solution To The Inverse Problem

In Section 1 it was noted that, in all but the most rudimentary applications of tactile sensing,
real-time processing of tactile sensory data is crucial. In Section 2 it was shown that the
inverse problem of tactile sensing may be formulated as a variational principle. Furthermore,
the inclusion of a regularizing penalty functional in the variational principle provides immunity
to sensor noise and transforms the problem to one that is well-posed. Solutions to the inverse
problem (obtained as solutions to a variational principle, require the minimization of the
nonlinear cost functional in equation (8). Real-time solutions to such a minimization problem
would require fairly powerful digital hardware using standard iterative algorithms. Since it
is our objective to obtain fast solutions to the inverse problem as well as limit the hardware
complexity to that which can be located in close proximity to individual sensor arrays, analog
neural networks provide an attractive alternative.

In this section an analog neural network is described which has been structured so as
to solve the regularized inverse problem of tactile sensing. The network described exploits
inherent parallelism in the problem since solutions are obtained as the result of asynchronous
relaxation of all variables in the network.

We show that the network described, satisfies the hypotheses of Theorem 3.1 and thus
an energy function for the network is explicitly given by the theorem. It is shown that the
resultant energy function is indeed the variational principle of equation (8).

Computer simulations of the network are used to evaluate the effect of the regularizing
parameter A on the resultant solutions and to evaluate performance of the network in the
presence of sensor noise.

11
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Figure 3: N-Channel Mazimum Entropy Deconvolution Network.

4.1 The Maximum Entropy Deconvolution Network

Inspired by the work of Tank and Hopfield (see [47]) on neural networks for solving optimiza-
tion problems, Marrian and Peckerar [28] suggested a neural network for solving deconvolution
problems with an entropy-like regularizer. Figure 3 shows a schematic of a N channel decon-
volution network.

The network proposed consists of two planes of amplifiers (i) the signal plane and (ii) the
constraint plane (see Figure 3). Inputs to the constraint plane (¢ = (€1, ...,en)T) are currents
proportional to sample strain measurements obtained from an array of tactile sensors. Outputs
of the signal plane (u = (uy,...,uy)”) are voltages which, in equilibrium, represent regular-
ized solutions to the inverse problem. The interconnections T;; are conductances (resistors
with values 1/T;;) corresponding to elements of the matrix representation T' of the discretized
convolution kernel. Amplifiers in the signal plane are exponential i.e. g(z) = exp(z) and
constraint plane amplifiers are linear with gain s (f(z) = sz). To intuitively understand the
manner in which this deconvolution network operates, dynamical evolution of the network can
be viewed as occuring in a series of infinitesimal discrete time steps. If evolution of the network
is viewed in this manner, the feedback loops generate a number of ‘analog iterations’. Each
analog iteration is approximately composed of the following steps:

1. Qutputs of the signal plane are convolved with the discretized kernel T' in the constraint
plane, forming the vector T" - u.

9. Error in the current estimate of the solution (given by outputs of the signal plane) is
evaluated in the constraint plane by subtracting the input strain vector € from the results
of the previous step i.e the vector T - u — ¢ is formed and fed back to the signal plane
through the constraint plane amplifiers with gain s.

3. Based upon feedback from the constraint plane, the outputs of the signal plane are
updated so as to reduce the error.

12



4. If outputs of the signal plane have not yet settled repeat (1)—(3)

It remains to be shown that the above series of ‘iterations’ do indeed converge, i.e. that the
network, as an analog electrical circuit, is asymptotically stable. Using the results from Section
3, we now show that the energy function for the network shown in Figure 3 corresponds to the
variational principle of equation (8). Thus stable equilibrium states of the network correspond
to regularized solutions to the inverse problem. Since minimization of equation (8 also involves
maximizing the entropy of the solution, we will refer to the network in Figure 3 as the mazimum
entropy deconvolution network (or MaxEnt network for short).

Stability of the MaxEnt deconvolution network can be established by applying Theorem
3.1 which also determines explicitly an energy function for the network. In the following it
is assumed that for the MaxEnt network, any dynamics associated with the constraint plane
amplifiers are negligible. This assumption is reasonable since the feedback capacitor associated
with the signal plane amplifiers can be chosen so that the response of the signal plane amplifiers
is sufficiently slower than those of the constraint plane.

In order to apply Theorem 3.1 it is necessary to first verify that the network satisfies the
two hypotheses. From Figure 3 it is clear that the voltages across the signal plane capacitors
v1,...,vN form a complete set of variables for the network, i.e v1,...,vn can be assigned values
arbitrarily and that they determine in every branch of the network one of the two variables,
branch current or node voltage.

From Figure 3, the current through the capacitor connected to the nth signal plane node

is given by, p .
Uy Up

in=C-E=—-E—'E—zk:tknf(Tk‘U—fk)- 9)

Here T = (tk1,tk25 .+ +» tin )T, It is easily verified from (9) that the hypothesis H2 of Theorem
3.1 is satisfied using vq,...,vn as the set of generalized voltage coordinates for the network.
Since we are interested in the behavior of the network outputs u = (uy,...,un), we note that
u; are related to v; by a monotone increasing function u; = exp(v;) 4= 1,..., N, and apply
Corollary 3.1 to write the energy function for the network in terms of the output variables u.

Pu)=-3 / " indun (10)
~ Jo
The dynamical equations of the network can now be written in the following form:

du ~10P(u)
T -GC u (11)
where u = (%1 ..., uN), Vo = ¢~ (un), G = diag(g'(v1),...,9'(vN)), and C = diag(Cy, . ..,CnN).
Because g(v) = exp(v), is a monotone increasing function G is always positive definite. Hence
from ( 11), it is clear that the equilibrium states of the network must correspond to stationary
points of P(+).

In order to understand the nature of the equilibrium states (if any exist) of the network we
must evaluate the integral expression for P.

P(u) = ;Aun (gil—l(z—uﬁl + —;; 4 zk:t]mf(Tk < U — Ek)> dv, (12)

un g7 (Un) v dug
> 7 dun+zn: /0 7 (13)

n Y0

+Z/unztknf(Tk-u—ek)dun. (14)
n Y0 k
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If we let F(zx) be such that dF(zx)/dz, = f(2i) then,
Un q—1
P(u) = Z/o f’——l(z-’i’l)-dun+z%+zf’(:rk-u—ck). (15)
n n k

Since the signal plane amplifiers are characterized by g(u) = exp(u), and the constraint plane
amplifiers are characterized by f(z) = sz where s is a constant defining the feedback gain,

1
P(u) = Z—;(Tk.u— @)’ + 2 3 un logus. (16)
k n

It is clear from ( 16) that P(u) — oo as ||u}| — co. Hence all solutions to ( 11) approach
one of the set of equilibrium states as t — oo. In Section 2 it was noted that there exists a
unique minimum of ( 16) which correspond to the regularized solution of the inverse problem.
Therefore outputs of the network will converge to a regularized solution of the inverse problem.

Equation ( 16) gives us an explicit form for the energy function for the maximum entropy
deconvolution network.

Introduction of other Regularizers As discussed in Section 2, the choice of a regularizing
principle must be based upon the physical constraints present in the problem. Also in Section 2
it was shown that the entropy regularizer is appropriate for the recovery of a stress distribution
which is normal to the compliant sensing pad. In the case of tangential stress distributions,
use of an entropy regularizer would be inappropriate since tangential stress is not unisense in
nature. However, it can be seen from equation (15) that the network structure described in
the last section is not restricted to use with an entropy regularizer only. It is clear that any
regularizer which can be written in the form:

N
> [ o wav (17)

can be introduced into the energy function of the network provided ¢(-) is a monotone increasing
function which can be implemented as the characteristic function of an analog amplifier.

4.2 Simulations

Computer simulations of the maximum entropy deconvolution network were performed in order
to better understand behavior of the network in terms of speed of convergence, noise immunity
and the effect of the regularizing parameter \. SIMNON®*, an interactive simulation program
for nonlinear dynamical systems was used to simulate the network.

For the purpose of simulation, the stress distribution at the surface of the compliant layer
was assumed to be the result of applying pressure normal to the surface using a cylindrical
object (see Figure 4). The resulting normal stress distribution due to such a cylindrical indentor
can be written as (see [6]),

foly) = { Lry/a? -yt ify€[-a,q (18)

0 elsewhere

4SIMNON was provided to us by Professor Astrom from the Lund Institute of Technology.
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Figure 4: Application of stress at boundary of elastic half-space using a cylindrical object

where p is the force per unit length and a is the halfwidth of the contact region. Simulations
were performed using p = 3 and @ = 1. The resulting stress distribution is then convolved
with the convolution kernel k, relating normal stress to strain which is given by,

3 a(e® = (y—30)%)
21E (22 + (y — %0)?)%’

where the modulus of elasticity is £ and Poisson’s ratio for the material is assumed to be
0.5. (E = 1 and =z = 1 were used for ther purpose of simulation.) The resulting ‘strain’ is
then provided as input to the network which then attempts to reconstruct the surface stress
distribution.

Accurate asessments of convergence time could not easily be made using digital computer
simulations. If the signal plane capacitors were assigned values so as to reduce convergence
time (by decreasing the RC time constant) numerical instability resulted. By decreasing the
integration time step the problems with instability could be avoided at the cost of tremendous
increases in the time necessary to perform a simulation; so it was merely observed at this stage
that the network does converge.

To evaluate performance of the network in the presence of noise, Gaussian white noise with
variance o2 was added to the strain from which surface stress was to be determined. Figure 5
shows the reconstruction of surface stress obtained by the network from noisy data (o2 = 0.1)
with A = 0 i.e. without any regularization. It can be seen that the reconstruction is very poor
due to multiple peaks and negative solutions. However, in comparison to the reconstruction
obtained under identical conditions using the Discrete Fourier Transform (see Figure 6) the
network solution is markedly superior.

As the regularizing parameter X is varied (see Figures 7-8), varying degrees of positivity and
smoothness are imposed upon the solution. For A = 0.1 (Figure 7)it is clear that although the
solution has been constrained to the positive orthant, the degree of regularization is insufficient
for the given noise conditions. In Figure 8 (A = 100) the solution has been over-regularized
since solutions which should have been close to zero have been pushed away from zero and the
peak of the distribution has been greatly suppressed. Figure 9 shows reconstruction obtained
using A = 10 which is the ‘best’ of the three shown.

ka(y — o) = (19)
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Figure 6: Reconstruction of surface stress from noisy strain data using the DFT approach
(1)Designed surface stress, (2)Reconstruction.

Clearly, for given noise conditions, there exists a value of the regularizing parameter A
for which the reconstruction is optimal in some sense. Since the objective is to match the
reconstruction to the original stress distribution as closely as possible, it is reasonable to choose
a value of A for which the discrepancy between the original stress distribution and the network
reconstruction is minimized. One measure of the discrepancy between the known solution and
the network solution is the mean squared error which can be written as,

_ Lo g2
MSE = Zlfy = full (20)

where f0 € IRYN is the known solution to the inverse problem and f, € RY is the solution
obtained by the network. Such an approach to the problem of choosing A suggests the use of
design tools such as CONSOLE (see [9]) which is a computer aided design tool for parametric
optimization of dynamical systemsS.

5CONSOLE was used to optimize parameters in design of the breadboard prototype network which was
constructed
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Figure 7: Network reconstruction of surface stress from noisy strain data for A =
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4.2.1 Breadboard Prototype of Deconvolution Network

As discussed in earlier, accurate assesments of convergence time for the network are not easily
made using digital computer simulations. Also, in the analysis of the deconvolution network , it
was assumed that any dynamics associated with the constraint plane could be ignored provided
that the signal plane amplifiers are sufficiently slower in response. In practical implementations
of such a network, it is necessary to understand what effects delays in the constraint plane
response may have upon the network. It is ultimately the constraint plane dynamics which
limit the speed of convergence which is achievable. A formal treatment of this subject is to be
found in Marcus and Westervelt [26]. A prototype breadboard model of the deconvolution net-
work was constructed using ‘off-the-shelf’ operational amplifiers, resistors and capacitors. The
network was constructed with seven signal plane nodes and seven constraint plane nodes. Since
the purpose of constructing the breadboard prototype was to estimate the speed achievable by
such a network, exponential amplifiers in the signal plane were replaced by unity gain linear
amplifiers to simplify the circuit . Replacing the exponential amplifiers by linear amplifiers

6 A second breadboard prototype was also constructed which contained the exponential amplifiers, but was
used to solve a different problem (see [27]).
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Figure 9: Network reconstruction of surface stress from noisy strain data for X = 10 (1)Recon-
struction, (2)Designed surface stress.

results in the entropy regularizer being replaced by a regularizer of the form,
1
AM(v) = RZU? (21)

The interconnection matrix [T;;] was chosen as a seven point discretization of the elastic
kernel kY(-) in equation (19) and implemented using resistors with values R;; = 1/T;;. Thus
if the voltage output v; of node k is connected to the input of node j through a resistor Ry;
then current input to node j due to node k is given by Ohm’s Law as,

(7

= Ry

- (22)

which is as desired.

Inputs to the network (currents injected into the constraint plane) were chosen to rep-
resent samples of the strain distribution due to the compressive loading profile used for the
simulations.

The rise time of the constraint plane amplifiers was measured to be approximately 1 usec.
Actual response time of the constraint plane would be longer than this since the parallel
combination of all resistors connected to the input of any node contribute to the RC time
constant. It was observed that for choices of the signal plane capacitors C for which the rise
time of the outputs of the network would be below 10 usec, the outputs would oscillate i.e. the
network was unstable. For C=10 pF the rise time of the outputs of the network was measured
to be 10 psec (see Figure 10). It is clear that the use of faster operational amplifiers would
result in an increase in achievable speed since this would decrease the constraint plane response
time and thereby permit a decrease in the time constant of the signal plane.

Settling time and overshoot of the outputs of the network are controlled by the gain of the
constraint plane nodes. CONSOLE (see [9]) was used to choose a value for the gain so as to
minimize overshoot and settling time.

4.2.2 Integrated Circuit Prototype

A prototype analog integrated circuit implementation of the deconvolution network described
here has been fabricated, but remains to be tested. A hierarchical design philosophy is prac-
ticed in this initial implementation. The deconvolution network may be thought of as composed

18
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Figure 10: Oscilloscope trace showing time evolution of a single output of the signal plane for
the 7-channel breadboard prototype deconvolution network.

of two sections: (i) Active components of the network including signal and constraint plane
amplifiers and (ii) The functionally passive” resistive interconnection matrix. These two sec-
tions may also be thought of in the following manner. Once the size of the deconvolution
network (number of inputs and outputs) has been decided, the amplifiers of the network are
determined. However, the resistive matrix may be a variable entity. For instance, given two
different elastic materials (or even two different thicknesses of a given elastic material), the
convolution kernel k%(:) and hence its discretization [Tj;] are in general different. Thus the
network may be thought of as being composed of a fixed part and a variable part.

If fixed resistors are to be used to implement the interconnect matrix, then some provision
should be made to change this matrix without having to refabricate the rest of the network.
In order to provide some flexibility in the choice of the interconnect matrix and to permit the
use of two different fabrication technologies , the deconvolution network was fabricated as two
separate integrated circuits.

The amplifier chip (shown in Figure 11, is designed to serve as the ‘motherboard’ for the
network on top of which the resistive connection matrix chip (see Figure 12). Connections
between the two chips are made by local wire bonds between bonding pads provided for this
purpose on both chips. This approach also facilitates experimentation with different types of
connection matrices such as those with programmable connections.

5 Conclusions

In this paper, we considered the inverse problem of recovering stress distributions over regions
of contact from samples of strain provided by an array of tactile sensors. In the case where stress
is applied to the surface of a compliant material and strain is measured at a fixed depth beneath
the surface, the inverse problem was shown to be a problem of deconvolution. It was shown that
the technique of regularization could be used to introduce a prior: knowledge into the problem
in order to obtain solutions. The constraints of non-negativity and smoothness were imposed
by choosing an entropy regularizer for the recovery of normal surface stress. Solutions to the
inverse problem could then be obtained by minimization of a cost functional. We demonstrated
that under certain hypotheses, energy functions may be explicitly determined for nonlinear RC

"The term ‘functionally passive’ here is used to describe the fact that in some situations it is desirable to use
active circuit components configured to look like a passive resistor from an input/output standpoint.
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Figure 11: Layout of integraled circuit chip containing all amplifiers for an eleven channel
deconvolution network

clectrical networks. Stable equilibria of the network were shown to correspond to local minima
of the energy function and conditions for stability of the network were determined.

An analog neural network for regularized solution of the inverse problem was proposed.
Using the results of Section 3, it was shown that the energy function of the proposed network
corresponds to the variational principle formulated for solution of the inverse problem of tactile
sensing. Stability of the network, in terms of electrical circuit analysis, was guaranteed by
monotonicity of the characteristics of the signal plane amplifiers. It was also determined
that any regularizer which could be written in the form of equation (17) and satisfied the
monotonicity requirements for the signal plane amplifier characteristic g, could be incorporated
into the energy function for the network. Computer simulations demonstrated the ability of
the deconvolution network to accurately recover normal surface stress even when the sensor
outputs were severely corrupted by noise.

A breadboard prototype of the deconvolution network was used to demonstrate the com-
putational speed achievable by such a hardware implementation. Convergence time for the
breadboard prototype was measured to be approximately 10usec. An integrated circuit imple-
mentation of the proposed deconvolution network was undertaken. An hierarchical approach
was taken in the integrated circuit implementation to provide flexibility in the design of an
interconnection matrix.

6 Discussion

Most early vision problems are ill-posed and regularization has successfully been applied in
solving many of them (see e.g. [41] and [40]). However, regularization as a technique for solving
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ill-posed problems has also demonstrated limitations. Among the limitations of standard reg-
ularization theory, is its inability to effectively cope with discontinuities [31]. If the operators
K and P in equation (5) are linear (as in standard regularization theory), the solution space is
essentially restricted to generalized splines. Hence in some cases the resultant solutions will be
overly smooth and cannot be trusted at discontinuities such as edges. It has been suggested [50]
that after standard regularization, locations where the resultant solution originates a ‘large’
error in the second (regularizing) term of equation (5) can be identified as locations of discon-
tinuities. A second second stage of regularization can then be performed, using the locations
of discontinuities as boundary conditions. This approach requires the choice of a threshold
for error in the regularizing term in order to identify discontinuities. Furthermore the task of
locating discontinuities is hindered by the smoothing due to the first stage of regularization.
Marroquin in [29] proposes a nonquadratic stabilizer which preserves discontinuities in recon-
structions of surfaces from depth data by embedding prior knowledge about the geometry of
discontinuities.

Another approach to overcome some of the limitations of standard regularization theory, is
based on Bayesian estimation and Markov random field models of the image (tactile or visual).
This approach (see [31] uses prior knowledge represented in terms of appropriate probability
distributions instead of directly restricting the solution space. It can be shown [30] (see also
[31} and [41]), that maximizing the @ posteriort probability, is equivalent to minimizing an
expression of the form (5). However, in this case the functional to be minimized is not in
general quadratic as a whole.

It is clear that the class of problems for which quadratic variational principles are suffi-
cient, is limited. For every quadratic variational principle, it can be shown that there exists
a corresponding linear analog electrical network consisting of resistors, voltage sources, and
current sources, which has the same solutions. This fact is used in [40] to synthesize analog
resistive networks to solve problems in early vision. In [22], the approach taken to solving
a nonquadratic variational principle employs a hybrid analog-digital network which at each
iteration (on the digital time scale) solves a quadratic variational principle (in analog). In
general, nonquadratic variational principles may posses numerous local minima in addition to
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a global minimum (which may or may not exist). The deterministic gradient descent approach
taken in [23] demonstrated an ability to perform well (qualitatively) in comparison to statis-
tical annealing which converges to the global solution with probability one if appropriately
applied. However, convergence to the global solution cannot be guaranteed and the hybrid
analog-digital nature of the network introduces additional hardware complexity.

In this paper, it was shown that a strictly analog network can be structered so as to
solve a nonquadratic variational principle. Convergence to the global solution, in this case,
is guaranteed since the variational principle of (8) is strictly convex. It was also shown that
there exists a class of nonquadratic variational principles (see equation (17 )) which can be
solved by similar networks by choosing appropriate characteristics g(-) for the signal plane
amplifiers. In the case of this larger class of nonquadratic variational principles, convergence to
global solutions cannot in general be guaranteed since multiple minima may exist. Techniques
such as adding noise to the network can be used to aid in escaping from local minima in an
attempt to find the global solution. Two interesting questions arise in this context: (i)For
any nonquadratic variational principle, under what conditions does there exist a (possibly
nonlinear and active) analog network with the same solution? and (ii)How can optimality of
the solutions be guaranteed?

So far the discussion in this paper has been confined primarily to the problems of early
taction. The highest level of the tactile sensing hierarchy, which has been ignored so far,
is crucial to the usefulness of any tactile sensing system. A higher level description of the
tactile environment is the next step beyond the low-level description provided by the processes
of early taction. For instance, although a low-level description of a grasped object may be
sufficient to secure the object in a stable grasp, it is not adequate to directly identify the object.
In this aspect of tactile sensing as well, neural networks may provide a solution. Adaptive
neural networks have demonstrated a remarkable ability to ‘learn’ complex representations
and successfully classify patterns based on these representations. Among other applications of
such neural network classifiers are handwritten character recognition [14], identification of faces
[1], and classification of superposed radar return signals [50]. Successful VLSI implementation
of an adaptive neural network classifier for recognition of grasped objects may further reduce
the computational load of the central processor.

It was shown by construction of a breadboard circuit that analog hardware implementation
of the proposed network leads to convergence times in the order of 10usec. In order to compare
this with digital computation, we note that simple inversion of an n X n symmetric Toplitz
matrix, is of computational complexity O(n?). For the purpose of a biased comparison (biased
in favor of digital computation), we can ignore the regularizer and assume that it takes exactly
n operations to invert the matrix A. Then for a modest array of 25 tactile sensors, it would
be necessary to perform,

g operalions 5 solutions . Million operations

25 F— X 10° ———— = 62.5
solution second second

in order to keep up with the processing speed of the analog network. This is clearly not possible
for local digital computation. Also as the size of the sensor array increases, the processing time
required for digital computation increases quadraticaly. It was noted in that in the case of
the analog network, convergence time actually decreases as the size of the problem increases.
In [18] it was established through survey that processing times of approximately 1-2ms are
sufficiently fast for most tactile sensing applications. Additional available time resulting from
the use of analog network processors could be utilized to perform other tasks such as predicting
slippage based upon prior and current processing results.

22



It is clear that there remain a great many unaddressed and unsolved problems in the area
of tactile sensing. Tactile sensing has not received the attention of researchers to the same
extent as vision has. As in vision, there is a need in tactile sensing to identify and formalize the
problems involved and then devise sensible solutions to these problems. We have suggested
in this paper that analog neural networks may provide a solution to some of the low-level
processing aspects of tactile sensing and possibly even some of the higher level tasks such as
object recognition. However, we have only addressed a small portion of a large and complex
problem.
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Appendix

A TIll-Posedness of the Inverse Problem of Tactile Sensing

The general form of integral equations of the first kind is given by,

b
g(t) = / k(t,s)f(s) ds c<t<d. (23)
a
Equation (23) may be rewritten in operator notation as,

9(1) = (Kf)() (24)

where K is the integral operator with kernel function k. In the particular case of the tactile
sensing problem, K is a convolution operator with the convolution kernel k. Since g(-) and
f(-) in this case represent strain and stress respectively and are therefore signals with finite
energy, we consider the case where g, f € La([a,b]) with norm defined by,

b 1/2
1Al = ( ROk d) (25)

and @ = Ymin, b = Ymaz- Thus we are interested in the case when, k,(y, yo)3€ La([a,b] X [a,d])
and

b
px(y) = (Kq)(y) = ] k(Y 10) g0 (Yo )dyo. (26)
To demonstrate the ill-posed nature of the inverse problem, we would like to do the follow-
ing,

1. Show that in the infinite dimensional setting of equation (26) the inverse of the integral
operator K is unbounded.

2. Verify that the finite matrix representation of K in equation (4) (obtained by discretiza-
tion of the kernel function) is indeed a justifiable approximation of the operator K.

3. Show that the finite dimensional manifestation of the unboundedness of the inverse of K
occurs in the ill-conditioning of the finite matrix representation of K.

In order to clarify latter discussion we present some definitions, notation, and theorems.
Proofs of the theorems are to found in Gohberg and Goldberg [12] and/or Rudin[44].

Notation:
H, H i=1,2,... Hilbert Spaces
L(X) Bounded linear operators on X
L(X,Y) Bounded linear operators from X to Y
Sp{¢la¢2a"'} Spa'n of {¢1a¢27"‘}
Im(A) Image of A
A* Adjoint of the operator A

Definition A.1 An operator A € L(H1, H3) is compact if for each sequence {x,} in Hy, such
that ||z,|] = 1, the sequence {Ax,} has a subsequence which converges in H,.

SWe will use %, (y, yo) to denote k3(y, y0) unless otherwise indicated
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Lemma A.1 If A € L(Hy, Hj) is of finite rank then A is compact.

Theorem A.1 Let {A,} be a sequence of compact operators in L(Hy, Hy) such that ||A, —
A|| — 0 as n — oo, where A € L(II1, ). Then A is compact. W

To show that the integral operator K is bounded, we note that since k£ € Ly([a, ] X [a, b]),

/b/b|k(t,s)|2 ds dt < oo. (27)
Now,
b
&N = [ k(t,9)1(s) ds. (28)
So by Schwarz’s inequality,
[ k) o ds < ([ 1t ) a2 [ 15 o). (29)
Therefore, - b b
AP < [ ([ e os@) as? <UAR [ [ 1k ) ds d. (30)
5o, b b
HK||2§/ / Ik(t, $)|® ds dt < oo. (31)

Hence the operator K is bounded. K is clearly linear as well and so K € L(H) where
H = Ly([a,b]). Since from equation (2) we see that k(t,s) = k(s,t), the operator K is also self
adjoint.

To show that K is a compact operator we construct a sequence of operators of finite rank
and then use Theorem A.l.

Let ¢q,¢3,. .. be an orthonormal basis for Ly([a,b]). Then,

ii(t,s) = ¢,(t)q§1(s) ,7=1,2,...

is an orthonormal basis for Ly[a,b] X [a,b]) (see Gohberg and Goldberg [12]). Therefore,

o ¢]
k(t,s) = Z < k,®i; > ®4(2, 8). - (32)
ty3=1
Let N
ku(t,s) = Z <k, ;> (Pij(t,s). (33)
fyi=1
Then,
”k - kn“ - Oa (34)

where || || is the norm on La([a, ] X [a,D]). Let Ky be the integral operator defined on Lz({a, b])
by,

(Knf)(t) = / " ()£ (5) ds. (35)
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So K, is bounded, linear and of finite rank since I'm{(K,) C Sp{¢1,...,é,}. Therefore by
Lemma 1, I, is also compact. Now,

i< ([ [ ke, ds ' = e, (36)

Thus applying (34) and (36) to K — K, we get,

K

1K = Kall < Ik = kol = 0. (37)

So by Theorem A.1, K is compact.

To summarize, we have thus far shown that the integral operator K is bounded, linear, self
adjoint and compact.

Although every linear operator on a finite dimensional Hilbert space over € has an eigen-
value, it is not true that even a self adjoint operator on an infinite dimensional Hilbert space
must have an eigenvalue. The next few theorems are concerned with the eigenvalues of such
operators.

Theorem A.2 (a)Any eigenvalue of a self adjoint operator is real

(b)If X is an eigenvalue of A € L(H) then, |A] < ||A4]|.

(c)If A € L(H) is compact and self adjoint then A has an eigenvalue and at least one of
the numbers ||A|| or —||A]| is an eigenvalue of A. ™

Theorem A.3 Let A € L(H) be a compact self adjoint operator, where H is an infinite
dimensional Hilbert space. Then the spectrum o(A) of A consists of zero and the eigenvalues
of A. Deo(4)) m

Now, (A — K) is invertible for A¢o(K). Since K is compact and self adjoint, by Theorem
A.3,0 € o(K). Hence the inverse of (AI — K) is unbounded for A = 0, which is equivalent to
saying that the inverse of the integral operator K is unbounded.

Irom the above result, it is clear that in the infinite dimensional case the inverse problem is
ill-posed in the sense of Hadamard since the inverse of the operator K is unbounded, solutions
will not depend continuously upon the initial data.

Finite Matrix Approximation of the Convolution Kernel In the context of the tactile
sensing problem, the convolution operator K has been approximated by a finite rank operator
by discretizing the kernel & and considering only samples of the stress and strain. In order to
justify the use of such an approximation, we state the following theorem.

Theorem A.4 FEvery compact operator in L(Hy, Hy) is the limit, in norm , of ¢ sequence of
operators of finite rank. M

In fact, in Section 2.4 it was shown that K is the limit (in norm) of the sequence of finite

rank operators {K,}.
If {¢;} is an orthonormal basis for Ly([a, b]) we know that

B;i(1,8) = di()di(s)  4,5=1,2,... (38)

forms an orthonormal basis for Ly([a,d] X [a,b]). The infinite matrix representation, [a;;], of
the integral operator K with respect to the basis {¢;} is given by,

b rb _
aij =< K¢;,d; >= / / k(t, 8)bi(s)ilt) ds dt =< k, ®j; > . (39)
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Since 0 € o(K') and A = [a;;] is unitarily equivalent to K, zero is also in the spectrum of A
and thus the inverse of A is also not a bounded operator. Theorem A.4 says that the operator
K can be approximated ar britrarily well by an operator of finite rank, say K (of rank n) with
finite matrix representation A,. Asn — oo the approximation becomes better, however, since
0 € o(K),as n — oo at least one of the eigenvalues of A, approaches zero. By Theorem 2(b),
at least one of the eigenvalues of A, approaches either ||K {| or —||K]].

The condition number P(A) of a matrix A is defined as

I/\ (4)]
7 IA(A)]

P(A) = (40)

In solving a finite system of linear equations of the form Az = y, the condition number is a
measure of sensitivity of solutions to errors in the initial data y and approximations made in
the inversion of the matrix A (e.g. finite word length effects) on the solution #. Large values
of P(A) result in large errors in the solution. In the event that P(A) is large (P(A) = 1 being
the best case), we say that the matrix A is ‘ill-conditioned’.

It is clear from the observations made earlier about the eigenvalues of A, that as n — 00,
A, becomes increasingly ill-conditioned since the denominator in equation (40) approaches
zero as the numerator approaches || K]|.

We have shown that in the infinite dimensional case, the inverse problem is ill-posed in the
sense of Hadamard. Ill-posedness of the problem in this case is due to the unboundedness of
the inverse of the integral operator K which is in violation of Hadamard’s third requirement
that the solution depend continuously on the initial data for the problem to be well posed. We
have justified approximating the operator K by a finite matrix since any compact operator in
L(Hy, Hy) can be approached (in norm) by a sequence of operators of finite rank. Lastly, we
have made the observation that unboundedness of the inverse of K induces ill-conditioning of
the finite matrix approximation to K.

B Energy Functions for Nonlinear RC Electrical Networks

Definitions Pertaining To Nonlinear Networks
Elements: Two terminal elements can in general be described by a relationship of the form,

di d*i dv d%v
f( ,dt dt2, ,D,E{,W’“.’t)_o (41)

Where v is the voltage across the two terminals of the element and ¢ is the current through
the element.

Nonreactive elements are those for which the dependence on time derivatives in equation
(41) is absent, i.e. they can be described by f(7,v,t) = 0.

Time invariant elements are those for which the defining function is not explicitly time
dependent

For time invariant nonreactive elements the locus of f(Z,v) = 0 is called the characteristic
curve of the element. For general time invariant elements, the ¢-v curve represents a trajectory
in the phase space of the element viewed as a dynamical system.

A time invariant nonreactive element is said to be passive if the characteristic curve in-
tersects the i-v axes at no point other than the origin. Otherwise the element is said to be
active.
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Sources: A current/voltage source is a time invariant active nonreactive element for which
voltage/current is absent from the defining function f(i,v).

Among the first theorems for linear electrical networks is Maxwell’s Minimum Heat Theo-
rem (1837) which is stated below in modern terminology.

Theorem B.1 (Maxwell’s Minimum Heat Theorem) For any linear, time-invariant, re-
sistive network driven by voltage and/or current sources, of all the current distributions consis-
tent with Kirchoff’s current law, the only distribution which is also consistent with Kirchoff’s
voltage law and therefore the true distribution is the one which minimizes the quantity (W —2P,)
where W is the total power dissipated by the resistors and P, is the total power supplied by the
voltage sources. ]

Having chosen a set of generalized current coordinates say for example iy, ..., ¢y, Maxwell’s
theorem leads to the following set of m equations,

0
5{‘(I’V*2PU)=0 j:l,...,m (42)
J

which when solved for the current coordinates iy, ..., i, determine all variables in the network.

The dual of Maxwell’s theorem states that for the above network, among all voltage distri-
butions which are consistent with Kirchoff’s voltage law, the only one which is also consistent
with Kirchoff’s current law and therefore the true distribution is the one which minimizes
(W — 2Pp), where Py is the total power supplied by the current sources. This dual theorem
can be used to solve for all variable in the network by first solving for the generalized voltage
coordinates.

Maxwell’s theorem tells us that the quantities (W — 2P,) and (W — 2Pr) are stationary
with respect to the distributions of currents and voltages in the network respectively. It can
be shown that these quantities are not in general stationary in the case of networks containing
nonlinear elements. Hence to solve for voltages and currents in a nonlinear network in an
analogous manner we must determine first the stationary quantities.

B.1 Invariants of Motion in Nonlinear Electrical Networks

Two quantities defined by Millar [37] relating to elements of a nonlinear network are the
‘content’ and the ‘co-content’ of an element.

Content and Co-content Let (i1, v1) be a point on the i—wv curve of a two terminal element.
The ‘content’ of the element, denoted by G is defined by,

i1
G = / v di. (43)
0
The ‘co-content’ of the element is denoted by J and is defined by,

J:/lidv (44)
0

We observe that for a passive element the total power dissipation is W = J 4 G and that
for a linear, passive element J = G = W/2

The total content (co-content) of a network is defined as the sum of contents (co-contents)
of all constituent elements including current and voltage sources. We will use G and J to
denote the total content and co-content respectively. We will use Gj; and Jj;; to denote the
content and co-content of the element connecting nodes j and k.
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Stationary Quantities The following theorem identifies G and J as stationary quantities.

Theorem B.2 (Millar) If in an active (possibly reactive) network, the sum J of the co-
contents of all the constituent clements is expressed in terms of the defining number of voltage
coordinates of the network subject only to the restrictions of Kirchoff’s voltage law, then J is
stationary for the actual distribution of voltages. m

The dual of this theorem is obtained by replacing co-content by content, J by G, and
voltage by current everywhere.

Theorem B.2 provides us with the equivalent of Maxwell’s theorem for nonlinear networks
of time invariant elements. To restate the above theorem in a manner analogous to Maxwell’s
theorem, we can say;

In any active (possibly reactive) network, of all distributions of current/voltage consistent
with Kirchoff’s current/voltage law, the ones for which G /J is stationary are the only ones that
are also consistent with Kirchoff’s voltage/current law and are thereby the true distributions.

Thus if we express G'/J in terms of the defining number (m/n) of current/voltage coor-
dinates, we can determine all currents and voltages in the network by solving either one of

the following sets of simultaneous partial differential equations, %% =0 r=1,...,m ,or
aJ _ —
a_u;_ q—l,...,n.

Invariants of Motion The next theorem identifies G and J as invariants of motion. That
is, as a network evolves in time following an impulsive change in one or more of the current or
voltage sources, the total content and the total co-content of the network are conserved.

Theorem B.3 (Millar) Inany network of time invariant elements (possibly including sources),

the total content G and the total co-content J are invariants of motion. (i.e. 4 = 0 and

‘fi—‘t] = 0, where ‘Q—Cf and dd—{- are the lolal time derivatives of G and J given by,

G _0G  9Gdi . 0G din

dt — 01 ' iy dt Oty dit
and

47 _ 9 9Tdw . 0 dv,

dt 9t Ovy dt dv, dt

where m is the defining number of generalized current coordinates and n is the defining number
of generalized voltage coordinates, m

In a directed network with b branches and m nodes, the set ol branch currents ¢ = (41, ..., )
and the set of branch voltages v = (vy, ..., %) are vectors in a b-dimensional Euclidean vector
space £ with the inner product defined by < 2,y >= ZZ:I Y. Let T be the set of all
vectors in £% such that if i € 7 then the constraint of Kirchoff’s current law is satisfied for each
node in the network, i.e. 3,040 2 = 0. Similarly, let V be the set of all vectors in £ such that
if v € V then Kirchofl’s voltage law is satisfied, i.e ) ;,,, v, = 0. T and V are clearly subspaces
of & since they are defined via linear relationships (Kirchoff’s Laws). The following theorem
which appears in [2] is casily obtained using Tellegen’s Theorem (sec [49]) which states that Z
and V are orthogonal subspaces of £°.
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Theorem B.4 (Brayton—Moser) Let I' denote a one dimensional curve in I X V with co-
ordinates denoted by ¢ and v. Then,

A‘Xb: v diy, = /I‘ Zb: iwdv, =0 o (45)

p=1 p=1

Having stated the above two theorems and having defined the complete set of variables
v* = (vq,...,vn) for the network, we proceed with the proof of Theorem 3.1

Proof Of Theorem 3.1: From Theorem B.4 we know that [ 3°0_, i,dv, = 0. We choose
T from a fixed initial point to a variable end point in £ such that along T' the characteristic
relationships of the constituent elements of the network are satisfied. We can write equation

( 45) in the following form:

N b
/ S iydu, + / 3 iudv, =0 (46)
r 4 r

pu=N+1

The first integral is over all capacitive branches and the second is over all other branches.
Note that if the first integral on the left is independent of the path I" then the integration and
summation may be interchanged to obtain —P(v) as defined in the statement of Theorem 3.1.
Let,

N
P(v) = — -/I‘ Z i,dv,. (47)
p=1

Let € = Efx__l i,dv,. For the integral in ( 47) to be independent of I', it is necessary that ¢
be a perfect differential. That is, we can write £ as, £ = do, where o0 = o(v1,...,vn) and,

do do
do = —dvy + -+ -+ ——dvp. 48
o B0, 41 4t Bon VN (48)
But since we want £ = do we must have,do = i1dvy + --- + iydvy. Equivalently, we need
i = g—;; p=1,..., N, which is the case if and only if,

a, D’ Oiy B
v, Ov,0v, v, M=oy N (49)

By hypothesis (H2) (49) holds. Hence P(v) is a function of the endpoints of I' alone, and
choosing the origin as a starting point for I', we have,

~ N Un,
P(v)=P(v)=~) /0 indvy,. (50)
n=1

In this case we have,

_ _9P(v) , dv,

= = —Fr =1,...,.N 51
b v, P dt P=2aeen iy (51)

where the equality on the right is obtained by the dynamical law of capacitors.
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Therefore,
, dv, _ OP(v)

C,= =

Pdt dv,
where v¥ = (v1,...,0n). We now write the system of differential equations defining the
dynamical behavior of the network in the following vector form,

_ dP(v*)
- Qor

p=1,...,N (52)

~ Cv* (53)
where C = diag(Ci,...,Cn), and %iﬂ is the gradient of P(z). Since the matrix C is positive
definite and symmetric, we know that & P(v*(1)) <0 and % P(v*(t)) = 0 if and only if v* is an
equilibrium of the gradient system ( 53). Hence if v* is an isolated minimum of P(v*) then v*
is an asymptotically stable equilibrium of the gradient system ( 53). Therefore the equilibrium

states of the network correspond to stationary points of P(v*), which we shall call the energy
function, and the local minima of P(v*) are the stable equilibria of the network. If in addition
to this P(z) — oo as ||z|| — oo then it can be shown using a well known result from Lyapunov
stability theory that all solutions to ( 53) approach one of the set of equilibrium solutions as
it—o00. W

We observe that P(v+) is just the negative of the co-content of all independent capacitive
branches in the network. The total co-content of the network, J, is an invariant of motion
(Millar [37]) even for dissipative systems where the total energy is not conserved. The analogy
to kinetic and potential energy of a nondissipative mechanical system is evident. P(v#) can be
regarded as a type of potential energy which is minimized as the system settles. The sum of
the co-contents of all other branches in the network plays the role of kinetic energy. J, which
is the sum of these two quantities is like the total energy of the system and is conserved.
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